Positive solutions to a two point singular boundary value problem
نویسندگان
چکیده
منابع مشابه
Positive Solutions to a Singular Second Order Boundary Value Problem
In this paper, we establish some criteria for the existence of positive solutions for certain two point boundary value problems for the singular nonlinear second order equation −(ru ) + qu = λf (t, u ) on a time scale T. As a special case when T = R, our results include those of Erbe and Mathsen [11]. Our results are new in a general time scale setting and can be applied to difference and q-dif...
متن کاملPositive Solutions for a Singular Third Order Boundary Value Problem
The existence of positive solutions is shown for the third order boundary value problem, u′′′ = f (x,u),0 < x < 1, u(0) = u(1) = u′′(1) = 0, where f (x,y) is singular at x = 0 , x = 1 , y = 0 , and may be singular at y = ∞. The method involves application of a fixed point theorem for operators that are decreasing with respect to a cone. Mathematics subject classification (2010): 34B16, 34B18.
متن کاملPositive Solutions for Singular Three-point Boundary-value Problems
In this paper, we present the Green’s functions for a second-order linear differential equation with three-point boundary conditions. We give exact expressions of the solutions for the linear three-point boundary problems by the Green’s functions. As applications, we study uniqueness and iteration of the solutions for a nonlinear singular second-order three-point boundary value problem.
متن کاملMultiple positive solutions to third-order three-point singular semipositone boundary value problem
By using a specially constructed cone and the fixed point index theory, this paper investigates the existence of multiple positive solutions for the third-order three-point singular semipositone BVP: x ′′′ (t) − λ f (t, x) = 0, t ∈ (0, 1); x(0) = x ′ (η) = x ′′ (1) = 0, where 1 2 < η < 1, the non-linear term f (t, x): (0, 1) × (0, +∞) → (−∞, +∞) is continuous and may be singular at t = 0, t = 1...
متن کاملTRIPLE SOLUTIONS FOR NONLINEAR SINGULAR m-POINT BOUNDARY VALUE PROBLEM
In this paper, we study the existence of three solutions to the following nonlinear m-point boundary value problem u′′(t) + βu(t) = h(t)f(t, u(t)), 0 < t < 1, u′(0) = 0, u(1) = m−2 ∑ i=1 αiu(ηi), where 0 < β < π2 , f ∈ C([0, 1] × R ,R). h(t) is allowed to be singular at t = 0 and t = 1. The arguments are based only upon the Leggett-Williams fixed point theorem. We also prove nonexist results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Differential Equations & Applications
سال: 2011
ISSN: 1847-120X
DOI: 10.7153/dea-03-22